### Design Calculations for the Pressure Relief System and Vent Line

### **Hermann Nann, Indiana University**

- Heat Flux per Unit Area
- Mass Flow Rates
- Fluid Flow and Pressure Drop
- Resistance Coefficient K and Equivalent Length L/D
- Resistance coefficients for target/vacuum relief system
- Resistance coefficients for main vent line in shed/ER2
- Total resistance coefficients
- Maximum pressure
- Conclusion

### References

- 1. Boiloff Rates of Cryogenic Targets Subjected to Catastrophic Vacuum Failure, W. M. Schmitt and C. F. Williamson, Bates Internal Report # 90 02, 1990.
- 2. Flow of Fluids Through Valves, Fittings, and Pipe, Crane Technical Paper No. 410, Crane Co., New York, 1991

**Heat Flux per Unit Area** 

(A) Solar constant:

- $a = 1.34 \times 10^3 \text{ W/m}^2$
- (B) Heat flux into target vessel:  $q = 1.30 \times 10^4 \text{ W/m}^2$

Calculated under the assumption that the target vessel is surrounded by air (or Ar) using the formulae given in Bates Report #90-2. It includes:

- (1) film boiling of the LH<sub>2</sub> at the inside wall of the target vessel.
- (2) conduction of heat through the wall of the target vessel.
- (3) convective heat transfer from the surrounding gas to the outside wall of the target vessel.
- (C) Heat flux into vacuum vessel:  $q = 1.0 \times 10^5 \text{ W/m}^2$

### Estimate includes:

- (1) heat capacity of vacuum vessel
- condensation/direct freezing of air on the (2) outside surface of the vacuum vessel.
- film boiling of the LH<sub>2</sub> at the inside wall of the (3) vacuum vessel.
- (4) conduction of heat through the wall of the target vessel.
- convective heat transfer from the surrounding (5) gas to the outside wall of the target vessel.

Mass Flow Rates

The mass flow rate is given by:

$$w = \frac{q \cdot A}{h_{V}}$$

where q = heat flow per unit area A = area  $h_V$  = enthalpy of vaporization

Enthalpy of vaporization of hydrogen:  $h_V = 4.45 \times 10^5 \text{ J/kg}$ 

(A) Target vessel:

Surface area:  $A = 0.5 \text{ m}^2$ 

assume  $q = 1.3 \times 10^4 \text{ W/m}^2$ 

 $\Rightarrow$  w = 0.032 lb/sec

assume  $q = 1.0 \times 10^{5} \text{ W/m}^{2}$ 

 $\Rightarrow$  w = 0.25 lb/sec

Since q is not very well know, use w = 0.20 lb/sec in all further calculations.

(B) Vacuum vessel:

Surface area: 
$$A = 1.0 \text{ m}^2$$

assume 
$$q = 1.0 \times 10^5 \text{ W/m}^2$$

$$\Rightarrow$$
 w = 0.49 lb/sec

Use

w = 0.50 lb/sec in all further calculations.

### Fluid Flow and Pressure Drop

The rate of mass flow through pipes, valves, and fittings is given by the Darcy formula:

$$w = 0.1192Yd^{2} \sqrt{p_{1}(p_{1} - p_{2}) \left(\frac{M}{KT}\right)}$$

where w = mass flow rate [lb/s]

 $p_1$  = inlet (upstream) pressure [psia]

 $p_2$  = outlet (downstream) pressure [psia]

d = inner diameter of pipe [inch]

Y = net expansion factor for compressible flow through orifices, nozzles, or pipe

K = total resistance coefficient for the pipe system

T = absolute temperature of the flowing gas [K]

M = molar mass of the gas [g/mol]

Since the flow in the systems considered here will not be isothermal, the temperature T will be taken to be at the warmest point in the system (room temperature). This will overestimate the pressure  $p_1$ , but this will be an error on the side of safety.

### Functional dependence of Y versus $(p_1 - p_2)/p_1$ :



The functional dependence of Y versus  $(p_1 - p_2)/p_1$  is linear and can be written in the form

$$Y = 1 - mx$$

where 
$$m = \text{absolute value of slope}$$
  
 $x = (p_1 - p_2)/p_1$   
 $0 \le X \le X_{max}$  (The value  $X_{max}$  corresponds to sonic flow)

Substituting the linear form for Y into the Darcy equation yields

$$w = 0.1192d^{2} \left( 1 - mx \right) \left( \frac{p_{2}}{1 - x} \right) \sqrt{\frac{Mx}{KT}}$$

Squaring both sides of this equation leads to a cubic equation of the form

$$x^3 + ax^2 + bx + c = 0$$

where

$$a = -\frac{\left(w^2 + 2Fm\right)}{Fm^2}$$

$$b = \frac{\left(F + 2w^2\right)}{Fm^2}$$

$$c = -\frac{w^2}{Fm^2}$$

$$F = 0.01423 \cdot \left(\frac{Md^4p_2^2}{KT}\right)$$

This cubic equation was solved numerically for x.

For subsonic flow, at least one root must lie in the range  $0 < x < x_{max}$ . If not, then the flow is sonic. The steady-state pressure is then given by

$$p_1 = \frac{p_2}{1 - x}$$

Sonic flow represents the maximum possible flow rate in a piping system. It occurs when the flow velocity equals the velocity of sound in the flowing medium. The mass flow rate at the onset of sonic propagation is given by

$$w_{sonic} = 0.1192d^{2} \left(1 - mx_{\text{max}}\right) \left(\frac{p_{2}}{1 - x_{\text{max}}}\right) \sqrt{\frac{Mx_{\text{max}}}{KT}}$$

In order to insure that the flow is always subsonic,  $w_{sonic}$  is calculated with the initial value of  $p_2$  which is the atmospheric pressure.

### Resistance Coefficient K and Equivalent Length L/D

Pressure losses in a piping system result from a number of system characteristics:

- 1. Pipe friction, which is a function of the surface roughness of the interior pipe wall, the inside diameter of the pipe, and the fluid velocity, density, and viscosity.
- 2. Changes in direction of flow path.
- 3. Obstruction in flow path.
- 4. Sudden and gradual changes in the cross-section and shape of flow path.

Fluid velocity in a pipe is obtained at the expense of the static head; the decrease in the static head due to the velocity is given by:

$$h_L = \frac{v^2}{2g}$$

This is the definition of the velocity head. Flow through a valve or fitting in a pipe line also causes a reduction in the static head which may be expressed in terms of the velocity head. The resistance coefficient *K* in the equation

$$h_L = K \frac{v^2}{2g}$$

gives the number of velocity heads lost due to a valve or fitting.

The resistance coefficient *K* is always associated with the pipe diameter in which the velocity occurs.

The resistance coefficient *K* can be treated as a constant for any given obstruction (i.e. valve or fitting) in a piping system under all conditions of flow, including laminar flow.

The same loss in straight pipe is expressed by the Darcy equation

$$h_L = \left( f_T \frac{L}{D} \right) \frac{v^2}{2g}$$

From this follows the resistance coefficient *K* for straight pipe as

$$K = f_T \frac{L}{D}$$

where  $f_T$  is the friction factor.

The ratio *L/D* is the equivalent length, in pipe diameters of straight pipe that will cause the same pressure drop as the obstruction under the same flow conditions.

The resistance coefficient K, for a given line of valves or fittings, varies with size as does the friction factor  $f_T$  for straight clean commercial pipe.

Pipe friction data for clean commercial steel pipe with flow in zone of complete turbulence:

| Nominal Size          | 1.5"  | 2.0"  | 2.5"  | 4.0"  | 6.0"  |
|-----------------------|-------|-------|-------|-------|-------|
| Friction Factor $f_T$ | 0.021 | 0.019 | 0.018 | 0.017 | 0.015 |

Conversion to different reference diameter:

$$K_a = K_b \left(\frac{d_a}{d_b}\right)^4$$

When a piping system contains more than one size of pipe, this equation allows to express all resistances in terms of one size.

### STOP-CHECK VALVES (Globe and Angle Types)





If:  $\beta = 1 \dots K_1 = 400 f_T$   $\beta < 1 \dots K_2 = \text{Formula } 7$ 

If:  $\beta = 1...K_1 = 200 f_T$   $\beta < 1...K_2 = Formula 7$ 

- 55 B √V

Minimum pipe velocity for full disc lift for full disc lift - 75 8ª √V

#### SWING CHECK VALVES





K - 100 fr

K = 50 fr

- 35 √V

Minimum pipe velocity (fps) for full disc lift (fps) for full disc lift

=  $60 \sqrt{\overline{V}}$  except U/L listed =  $100 \sqrt{\overline{V}}$ 

### TILTING DISC CHECK VALVES



|                                                  | ≪ - 5°        | - 15°  |
|--------------------------------------------------|---------------|--------|
| Sizes 2 to 8"K -                                 | 40 fr         | 120 /1 |
| Sizes 10 to 14" K -                              | 30 fr         | 90 fr  |
| Sizes 16 to 48" K -                              | 20 fr         | 60 fr  |
| Minimum pipe velocity (fps) for full disc lift • | 80 √ <u>V</u> | 30 √√  |

#### STANDARD ELBOWS



K = 30 fr

### STANDARD TEES



Flow thru run......  $K = 20 f_T$ Flow thru branch...  $K = 60 f_T$ 

### PIPE ENTRANCE

Inward Projecting



K - 1.0

| K    |
|------|
| 0.5  |
| 0.28 |
| 0.24 |
| 0.15 |
| 0.09 |
| 0.04 |
|      |



K = 1.0

PIPE EXIT Projecting Sharp-Edged Rounded

K = 1.0

# Calculation of the total resistance coefficient for the relief line from the target vessel to vent isolation box: reference diameter 1.5 inch

| Component                                    | Resistance<br>Coefficient K |
|----------------------------------------------|-----------------------------|
| 8 feet pipe                                  | 1.34                        |
| 3 - 90° elbows                               | 1.89                        |
| 2 - 45° elbows                               | 0.68                        |
| 1 – standard tee<br>(flow through<br>branch) | 1.26                        |
| 1 – relief valve*                            | 0.82                        |
| TOTAL                                        | 5.99                        |

<sup>\*</sup> according to manufacturer

# Calculation of the total resistance coefficient for the relief line from the vacuum vessel to vent isolation box: reference diameter 4.0 inch

| Component                                    | Resistance<br>Coefficient K |
|----------------------------------------------|-----------------------------|
| 8 feet pipe                                  | 0.41                        |
| 3 - 90° elbows                               | 1.53                        |
| 1 – standard tee<br>(flow through<br>branch) | 1.02                        |
| 1 – standard tee<br>(flow through run)       | 0.34                        |
| 1 – rupture disk                             | 1.00                        |
| 1 – pipe exit                                | 1.00                        |
| TOTAL                                        | 5.30                        |

## Calculation of the total resistance coefficient for the relief vent line in shed: reference diameter 4.0 inch

| Component             | Resistance<br>Coefficient K |
|-----------------------|-----------------------------|
| 30 feet pipe          | 1.53                        |
| 4 – 90° elbows        | 2.04                        |
| 1 – swing check valve | 1.70                        |
| 1 – pipe<br>entrance  | 0.50                        |
| 1 – pipe exit         | 1.00                        |
| TOTAL                 | 6.77                        |

### Conversion to 1.5 inch reference diameter pipe:

$$K_a = K_b \left(\frac{d_a}{d_b}\right)^4 = 6.77 \left(\frac{1.5}{4.0}\right)^4 = 0.13$$

## Calculation of the total resistance coefficient for the relief vent line in ER2: reference diameter 6.0 inch

| Component             | Resistance<br>Coefficient K |
|-----------------------|-----------------------------|
| 100 feet pipe         | 3.00                        |
| 4 – 90° elbows        | 1.80                        |
| 1 – swing check valve | 1.50                        |
| 1 – pipe<br>entrance  | 0.50                        |
| 1 – pipe exit         | 1.00                        |
| TOTAL                 | 7.80                        |

### Conversion to 1.5 inch reference diameter pipe:

$$K_a = K_b \left(\frac{d_a}{d_b}\right)^4 = 7.80 \left(\frac{1.5}{6.0}\right)^4 = 0.03$$

### Conversion to 4.0 inch reference diameter pipe:

$$K_a = K_b \left(\frac{d_a}{d_b}\right)^4 = 7.80 \left(\frac{4.0}{6.0}\right)^4 = 1.54$$

### **Total Resistance Coefficients:**

### A) Target vessel: reference diameter 1.5 inch

From target vessel to vent isolation box: K = 5.99

From vent isolation box to outside:

In shed K = 0.13In ER2 K = 0.03

**TOTAL** In shed K = 6.12 In ER2 K = 6.02

### B) Vacuum vessel: reference diameter 2.5 inch

From vacuum vessel to vent isolation box: K = 5.30

From vent isolation box to outside:

In shed K = 6.77 In ER2 K = 1.54

TOTAL In shed K = 12.1 In ER2 K = 6.84

## Maximum Pressure Rise as a Function of Resistance Coefficient *K* in Target and Vacuum Vessels:

|        | Target Vessel                     | Vacuum Vessel                     |
|--------|-----------------------------------|-----------------------------------|
|        | Pipe ID 1.5 inch $w = 0.2$ lb/sec | Pipe ID 4.0 inch $w = 0.5$ lb/sec |
|        | p <sub>max</sub> (psia)           | p <sub>max</sub> (psia)           |
| K = 6  | 38.6                              |                                   |
| K = 8  | 43.0                              | 19.8                              |
| K = 10 | 46.8                              | 20.8                              |
| K = 15 | 55.4                              | 23.3                              |
| K = 20 |                                   | 25.5                              |

### Conclusion

- The 1.5 inch ID relief line from the target vessel is able to handle a mass flow rate w = 0.2 lb/s with a pressure build-up of no more than 43 psia.
- The 4.0 inch ID relief line from the vacuum vessel is able to handle a mass flow rate w = 0.5 lb/s with a pressure build-up of no more than 23 psia.